Warning: file_put_contents(aCache/aDaily/post/neural/--): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Neural Networks | Нейронные сети | Telegram Webview: neural/10007 -
Telegram Group & Telegram Channel
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 На видео 32-летний Янн Лекун демонстрирует первую в мире сверточную нейронную сеть (CNN) для распознавания текста в 1993 году .

📅 Когда появились традиционные методы обработки изображений:

Традиционные (или классические) методы начали развиваться с 1960-х годов, а активно применяться — с 1970–1980-х, задолго до появления современных нейросетей.

✔️ К таким методам относятся:

- Фильтрация изображений (Гаусс, Собель, Лаплас и др.)

- Детектирование границ (Canny, Prewitt)

- Морфологическая обработка (эрозия, дилатация)

- Бинаризация, сегментация, пороговая фильтрация

- Шумоподавление, выделение контуров

📍 К 1990-м эти техники уже активно использовались в промышленности, медицине, военной технике и OCR (распознавании текста), например в факсах и сканерах. Именно в этом контексте и появлялись первые попытки заменить часть ручной обработки нейросетями, как сделал Лекун с CNN.

Всем продуктивного дня ☀️

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/neural/10007
Create:
Last Update:

🔥 На видео 32-летний Янн Лекун демонстрирует первую в мире сверточную нейронную сеть (CNN) для распознавания текста в 1993 году .

📅 Когда появились традиционные методы обработки изображений:

Традиционные (или классические) методы начали развиваться с 1960-х годов, а активно применяться — с 1970–1980-х, задолго до появления современных нейросетей.

✔️ К таким методам относятся:

- Фильтрация изображений (Гаусс, Собель, Лаплас и др.)

- Детектирование границ (Canny, Prewitt)

- Морфологическая обработка (эрозия, дилатация)

- Бинаризация, сегментация, пороговая фильтрация

- Шумоподавление, выделение контуров

📍 К 1990-м эти техники уже активно использовались в промышленности, медицине, военной технике и OCR (распознавании текста), например в факсах и сканерах. Именно в этом контексте и появлялись первые попытки заменить часть ручной обработки нейросетями, как сделал Лекун с CNN.

Всем продуктивного дня ☀️

@ai_machinelearning_big_data

BY Neural Networks | Нейронные сети


Share with your friend now:
tg-me.com/neural/10007

View MORE
Open in Telegram


Neural Networks | Нейронные сети Telegram | DID YOU KNOW?

Date: |

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Neural Networks | Нейронные сети from sg


Telegram Neural Networks | Нейронные сети
FROM USA